Publications

Export 655 results:
Author Title Type [ Year(Asc)]
2020
Tóth L, Nagy B, Gyimothy T, Vidács L.  2020.  Why Will My Question Be Closed? NLP-Based Pre-Submission Predictions of Question Closing Reasons on Stack Overflow Proceedings of the 42nd International Conference on Software Engineering, NIER Track (ICSE 2020). :105-108.
2019
Gyimesi P, Vancsics B, Stocco A, Mazinanian D, Beszédes Á, Ferenc R, Mesbah A.  2019.  BugsJS: a Benchmark of JavaScript Bugs. 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST). :90-101.
Ferenc R, Hegedűs P, Gyimesi P, Antal G, Bán D, Gyimothy T.  2019.  Challenging Machine Learning Algorithms in Predicting Vulnerable JavaScript Functions. 7th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering. :8-14.
Kecskeméti G, Németh Z, Kertész Attila, Ranjan R.  2019.  Cloud workload prediction based on workflow execution time discrepancies. Cluster Computing. vol 22(3):737-755.
Horváth F, Gergely Tamás, Beszédes Á, Tengeri D, Balogh G, Gyimothy T.  2019.  Code Coverage Differences of Java Bytecode and Source Code. Software Quality Journal. 27(1):79-123.
Horváth F, Gergely T, Beszédes Á, Tengeri D, Balogh G, Gyimóthy T.  2019.  Code Coverage Differences of Java Bytecode and Source Code Instrumentation Tools. SOFTWARE QUALITY JOURNAL. 27:79-123.
Gergely T, Balogh G, Horváth F, la Vancsics B, Beszédes Á, Gyimóthy T.  2019.  Differences between a static and a dynamic test-to-code traceability recovery method. SOFTWARE QUALITY JOURNAL. 27:797-822.
Csuvik V, Kicsi A, Vidács L.  2019.  Evaluation of Textual Similarity Techniques in Code Level Traceability. Proceedings of the 19th International Conference on Computational Science and Its Applications (ICCSA 2019). :529-543.
Kicsi A, Rákóczi M, Vidács L.  2019.  Exploration and Mining of Source Code Level Traceability Links on Stack Overflow. Proceedings of ICSOFT 2019, 14th International Conference on Software Technologies. :339-346.
Kicsi A, Csuvik V, Vidács L, Horváth F, Beszédes Á, Gyimothy T, Kocsis F.  2019.  Feature Analysis using Information Retrieval, Community Detection and Structural Analysis Methods in Product Line Adoption. Journal of Systems and Software. 155:70-90.
Hadabas J, Hovari M, Vass I, Kertész Attila.  2019.  IOLT smart pot: An IoT-cloud solution for monitoring plant growth in greenhouses. CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science. :144-152.
Garg R, Váradi S, Kertész A.  2019.  Legal Considerations of IoT Applications in Fog and Cloud Environments. 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2019). :193-198.
Kertész A, Pflanzner T, Gyimóthy T.  2019.  A Mobile IoT Device Simulator for IoT-Fog-Cloud Systems. JOURNAL OF GRID COMPUTING. 17:529-551.
Horváth F, Lacerda VSchnepper, Beszédes Á, Vidács L, Gyimothy T.  2019.  A New Interactive Fault Localization Method with Context Aware User Feedback. Proceedings of the First International Workshop on Intelligent Bug Fixing (IBF 2019). :23-28.
Bán D, Ferenc R, Siket I, Kiss Á, Gyimóthy T.  2019.  Prediction models for performance, power, and energy efficiency of software executed on heterogeneous hardware. JOURNAL OF SUPERCOMPUTING. 75:4001-4025.
Csuvik V, Kicsi A, Vidács L.  2019.  Source Code Level Word Embeddings in Aiding Semantic Test-to-Code Traceability. Proceedings of the 10th International Workshop on Software and Systems Traceability, (SST 2019 @ ICSE). :29-36.
Tóth L, Vidács L.  2019.  Study of The Performance of Various Classifiers in Labeling Non-Functional Requirements. Information Technology and Control. 48:1-16.
Szabó Z, Téglás K, Berta Á, Jelasity M, Bilicki V.  2019.  Stunner: A Smart Phone Trace for Developing Decentralized Edge Systems. Lecture Notes in Computer Science. vol 11534(Pereira J., Ricci L. (eds) Distributed Applications and Interoperable Systems. DAIS 2019)
Tóth L, Nagy B, Janthó D, Vidács L, Gyimothy T.  2019.  Towards an Accurate Prediction of the Question Quality at Stack Overflow Using a Deep-Learning-Based NLP Approach. Proceedings of ICSOFT 2019, 14th International Conference on Software Technologies. :631-639.