Publications

Export 661 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Balogh G, Beszédes Á.  2013.  CodeMetropolis - code visualisation in Minecraft. Proceedings of the 13th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM'13), Tool Track. :127-132.
Balogh G, Beszédes Á.  2013.  CodeMetropolis - a Minecraft based collaboration tool for developers. Proceedings of the 1st IEEE Working Conference on Software Visualization (VISSOFT'13), New Ideas or Emerging Results track. :1-4.
Kádár I, Hegedűs P, Ferenc R, Gyimóthy T.  2016.  A Code Refactoring Dataset and Its Assessment Regarding Software Maintainability. Proceedings of the 23rd IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER 2016). :599–603.
Faragó C, Hegedűs P, Ferenc R.  2015.  Code Ownership: Impact on Maintainability. Proceedings of the 15th International Conference on Computational Science and Its Applications (ICCSA 2015). 9159:3–19.
Nagy C, Lóki G, Beszédes Á, Gyimóthy T.  2007.  Code factoring in GCC on different intermediate languages. Proceedings of the 10th Symposium on Programming Languages and Software Tools (SPLST'07). :79-95.
Lóki G, Kiss Á, Jász Judit, Beszédes Á.  2004.  Code Factoring in GCC. Proceedings of the 2004 GCC Developers' Summit. :79-84.
Beszédes Á, Gergely Tamás, Schrettner L, Jász Judit, Langó L, Gyimóthy T.  2012.  Code Coverage-Based Regression Test Selection and Prioritization in WebKit.
Horváth F, Bognár S, Gergely Tamás, Rácz R, Beszédes Á, Marinković V.  2014.  Code Coverage Measurement Framework for Android Devices. Acta Cybernetica. 21:439-458.
Bognár S, Gergely Tamás, Rácz R, Beszédes Á, Marinkovic V.  2013.  Code Coverage Measurement Framework for Android Devices. Proceedings of the 13th Symposium on Programming Languages and Software Tools, SPLST'13. :46–60.
Horváth F, Gergely T, Beszédes Á, Tengeri D, Balogh G, Gyimóthy T.  2019.  Code Coverage Differences of Java Bytecode and Source Code Instrumentation Tools. SOFTWARE QUALITY JOURNAL. 27:79-123.
Horváth F, Gergely Tamás, Beszédes Á, Tengeri D, Balogh G, Gyimóthy T.  2017.  Code Coverage Differences of Java Bytecode and Source Code Instrumentation Tools. Software Quality Journal.
Horváth F, Gergely Tamás, Beszédes Á, Tengeri D, Balogh G, Gyimothy T.  2019.  Code Coverage Differences of Java Bytecode and Source Code. Software Quality Journal. 27(1):79-123.
Harsu M, Bakota Tibor, Siket István, Koskimies K, Systa T.  2012.  Code Clones: Good, Bad, or Ugly? Nordic Journal of Computing. 15:3–17.
Harsu M, Bakota Tibor, Siket István, Koskimies K, Systa T.  2009.  Code Clones: Good, Bad, or Ugly? 11th Symposium on Programming Languages and Software Tools SPLST'09. :31-44.
Hodován R, Kiss Á, Gyimóthy T.  2017.  Coarse Hierarchical Delta Debugging. Proceedings of the 33rd IEEE International Conference on Software Maintenance and Evolution (ICSME 2017). :194–203.
Kecskemeti G, Kertész Attila, Nemeth Z..  2017.  Cloud workload prediction by means of simulations. ACM International Conference on Computing Frontiers 2017, CF 2017. :279-282.
Kecskeméti G, Németh Z, Kertész Attila, Ranjan R.  2019.  Cloud workload prediction based on workflow execution time discrepancies. Cluster Computing. vol 22(3):737-755.
Bakota Tibor, Ferenc R, Gyimóthy T.  2007.  Clone Smells in Software Evolution. ICSM. :24-33.
Kókai G, Alexin Z, Gyimóthy T.  1996.  Classifying ECG Waveforms in Prolog. :173-199.
Alexin Z.  2008.  Civil társadalombiztosítást!. Népszabadság.
Tóth G, Nagy C, Jász Judit, Beszédes Á, Fülöp LJ.  2010.  CIASYS – Change Impact Analysis at System Level. Proceedings of the 14th European Conference on Software Maintenance and Reengineering (CSMR'10). :203-206.
Gyimesi P, Gyimesi G, Tóth Z, Ferenc R.  2015.  Characterization of Source Code Defects by Data Mining Conducted on GitHub. Proceedings of the 15th International Conference on Computational Science and Its Applications (ICCSA 2015). 9159:47–62.
Ferenc R, Hegedűs P, Gyimesi P, Antal G, Bán D, Gyimothy T.  2019.  Challenging Machine Learning Algorithms in Predicting Vulnerable JavaScript Functions. 7th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering. :8-14.
Szőke G, Nagy C, Ferenc R, Gyimóthy T.  2014.  A Case Study of Refactoring Large-Scale Industrial Systems to Efficiently Improve Source Code Quality. Proceedings of the 14th International Conference on Computational Science and Its Applications (ICCSA 2014). 8583:524–540.
Kertész Attila, Otvos F., Kacsuk P..  2014.  A case study for biochemical application porting in european grids and clouds. Concurrency Computation Practice and Experience. 26:1730-1743.